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Abstract

The paper is concerned with composite materials which consist of a homogeneous matrix phase with a set
of inclusions uniformly distributed in the matrix[ The components of these materials are considered to be
ideally elastic and exhibit piezoelectric properties[ One of the variants of the self!consistent scheme\ the
E}ective Field Method "EFM# is applied to calculate e}ective dielectric\ piezoelectric and thermoelastic
properties of such materials\ taking into account the coupled electroelastic e}ects[ At _rst the coupled
thermoelectroelastic problem for a homogeneous medium with an isolated inclusion is solved[ For an
ellipsoidal inclusion and constant external _eld the solution of this problem is found in a closed analytic
form[ This solution is then used in the EFM to derive the e}ective thermoelectroelastic operator for the
composite containing a random array of ellipsoidal inclusions[ Explicit formulae for the electrothermoelastic
constants are given for composites\ reinforced by spheroidal inclusions[ Þ 0888 Elsevier Science Ltd[ All
rights reserved[

0[ Introduction

Microinhomogeneous and composite materials made of two or more constituents _nd an
increasingly wide application in modern technology[ An important class of such materials is formed
by the so!called matrix composites that comprise a homogeneous phase "matrix# containing an
arrangement of _lling particles of another component "inclusions#[

As a rule\ the microstructure of real composite materials is stochastic] random parameters
characterize shapes\ sizes and physical properties of inclusions[ Also the distribution of the
inclusions in the volume of the matrix is random[ Hence the physical _elds in these composites\ even
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under deterministic external actions\ are stochastic[ The estimation of mean values "mathematical
expectations# of these _elds under the deterministic external actions is an important problem in
the mechanics and physics of microinhomogeneous materials[ From the solution of this homo!
genization problem one can _nd the e}ective properties of composite materials and one may
substitute the so obtained homogeneous constitutive law in the macroscopic analysis of structures[

Theoretical approaches to the problem deal mostly with uncoupled elastic and electric theory
"see\ for example\ the review articles by Willis\ 0870^ Kanaun and Levin\ 0883#[ However\ if the
constituents exhibit electromechanical coupling\ an external electric _eld can produce mechanical
deformation which generate an internal stress _eld in the material and vice versa[ Both of these
_elds can in~uence the macroscopic response of the material[ Therefore\ the coupling e}ects must
be taken into account when estimating the overall properties of composites with piezoactive
components[

The _rst theoretical treatment of this subject appears to be that of Newnham and co!workers
"0867#[ Chan and Unsworth "0878# applied a Voigt type approximation to _brous composites
made of piezoelectric ceramic _bers and a polymer matrix\ and they obtained simple explicit
formulae[ In a series of papers by Benveniste and Dvorak "0881#\ Benveniste "0882a\ b\ c\ 0883a#
exact relationships between the components of the tensors of e}ective material constants were
derived "see also Dunn\ 0882#[ Such relationships are especially useful if one is concerned with
composites consisting of exactly two components[ For _brous composites Benveniste "0883b# was
able to derive exact expressions for nine out of the ten e}ective constants by applying the composite
cylinder assemblage model[ Dunn and Taya "0882a# have generalized a number of popular micro!
mechanical models\ including the dilute concentration approach\ the di}erential scheme and the
E}ective Medium Method[ Particular attention has been given by those authors to the MoriÐ
Tanaka Method "Dunn and Taya\ 0882a^ Dunn\ 0882#[ The same approach was used in papers by
Wang "0883# and Chen "0883#[

In the mentioned articles one can _nd additional references to this _eld[ Among them we cite
only the monograph by Choroshun et al[ "0878# where the method of conditional averaging has
been used for predicting the overall electroelastic characteristics of piezoelectric composites[ The
application of variational principles and the E}ective Medium Method for the estimation of
electroelastic constants for composites and polycrystals can be found in the papers by Olson and
Avellaneda "0881# and Dunn "0882\ 0884#[

All these approaches have certain limitations and drawbacks[ So it is known\ that the E}ective
Medium Method applied to matrix composites can lead to physically contradictory results\
especially in the cases of large inclusion concentration and strong contrast in component properties[
Concerning the MoriÐTanaka Method it is now clear "Kanaun and Levin\ 0883^ Ponte Castaneda and
Willis\ 0884# that it allows to consider only composites with aligned arrays of ellipsoidal inclusions[

In view of the situation\ the present paper describes another self!consistent scheme\ the E}ective
Field Method "EFM#\ which will be used for constructing the e}ective coupled electroelastic
operator for piezoactive microinhomogeneous media[ This method leads to physically reasonable
results in the whole range of inclusions concentration[ Furthermore it allows to consider in an
averaged manner also the spatial correlation between the individual inclusions[ The present article
is based on an earlier paper "Levin\ 0885# where the method was used for the derivation of
electroelastic constants in isothermal problems[ Here these results are expanded by taking into
account the thermoe}ects[
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1[ Equilibrium of a homogeneous electroelastic medium with a single inclusion

Let us consider a homogeneous elastic piezoelectric material[ The linear constitutive relations
of thermoelectroelasticity for this material have the form]

sij � Cijklokl−eijkEk−biju\

Di � et
iklokl¦hikEk¦piu "1[0#

where s and o are the stress and strain tensors\ E and D the electric _eld and electric displacement
vectors\ C is the tensor of elastic moduli at _xed electric _eld\ h is the dielectric tensor "permittivity#
at _xed strain\ e is the tensor of piezoelectric constants characterizing coupled electroelastic e}ects
"the transpose of e\ written et\ is de_ned by et

ikl � ekli#\ b is the tensor of temperature stress
coe.cients\ p is the vector of pyroelectric constants\ and u denotes the temperature change from
some reference temperature[ Let us assume that mechanical and electrical _elds do not a}ect the
temperature distribution and that the temperature _eld\ which is obtained by solving the uncoupled
problem of heat!conduction\ is known[

It is convenient to write the relations "1[0# in the following short form]

J � LF¦Bu\

J � B
s

D B\ L � B
C −e

et h B\ F � B
o

E B\ B � B
−b

p B\ "1[1#

where the {matrix| L and the {vector| B have to be considered as linear operators\ which transform
the tensorÐvector pair ðs\ DŁ into another tensorÐvector pair ðo\ EŁ[ The reciprocal relations can be
written as

F � MJ¦Ru\ M � B
S g

−gt k B\ R � B
r

−g B\ "1[2#

where

S � "C¦eh−0et#−0\ k �"h¦etC−0e#−0\ g � Seh−0 � C−0ek\

r � S"b−eh−0p#\ g � k"p¦etC−0b#[ "1[3#

Here S is the compliance at constant electric displacement\ k denotes the inverse of the permittivity
tensor at constant mechanical stress\ r stands for the tensor of thermal expansion coe.cients\ and
g is another form of the pyroelectric coe.cients "at constant electric displacement#[

Because the EFM is based on the solution of a one!particle problem\ let us consider now an
unbounded piezoactive medium with the thermoelectroelastic characteristics L9 and B9\ containing
the closed region V "inclusion# with di}erent thermoelectroelastic properties L and B[ Such a
problem has been considered by several authors "Deeg\ 0879^ Wang\ 0881^ Benveniste\ 0881^ Dunn
and Taya 0882b#[ For completeness\ however\ we give a short derivation of the relevant results
below[

We start with the following system of elastic and electric equilibrium equations of the coupled
electroelastic theory for a heterogeneous medium]
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9ðL"x#9f"x#¦B"x#u"x#Ł � 9\ f"x# � B
ui"x#

−8"x# B[ "1[4#

Here ui"x# is the vector of elastic displacements at a certain position x\ 8"x# is the electric potential
and 9i � 1:1xi[

For our present inclusion problem we can express the operators L"x# and B"x# in the form

L"x# � L9¦L0V"x#\ B"x# � B9¦B0V"x#\

L0 � L−L9\ B0 � B−B9\ "1[5#

where V"x# is characteristic function of the region V[ Then the problem of _nding the solution
ui"x# and 8"x# can be reduced to a system of integral equations\ which is equivalent to the initial
system of di}erential eqns "1[4#]

F"x# � F9"x#¦gV

P"x−x?#ðL0F"x?#¦B0u"x?#Ł dx?\

P"x# � DG"x#D\ D � B
def 9

9 grad B[ "1[6#

Here F 9"x# is the vector of external elastic and electric _elds\ which would be in the medium
without the inclusion[ These _elds satisfy the equations

9L9F9"x# � −9B9u"x# "1[7#

and given conditions at in_nity[ The operator G"x# in "1[6# comprises the Green|s functions of the
coupled electroelastic di}erential operator\ which satis_es the equation

9L99G"x# � IÞd"x#\ IÞ� B
−dij 9

9 0 B\ "1[8#

where d"x# is Dirac|s function[ For arbitrary anisotropy of the medium the operator G"x# is given
by the expressions

G"x# �
0

7p1 g=j=�0

G"j#d"j = x# dSj\ G"j# � B
Gij"j# gi"j#

−gt
j"j# `"j# B\

Gij � 0Lij−
0
l

Hihj1
−0

\ gj �
0
l

hiGij\ ` � −"l¦hiL−0
ij Hj#−0\

Lij"j# � C9
ikjljkjl\ Hi"j# � e9

ikljkjl\ hj"j# � e9t
ljkjkjl\ l"j# � h9

ijjijj[ "1[09#

For x $ V\ the system of eqns "1[6# yield the _elds o"x# and E"x# inside the inclusion\ thereupon the
_elds outside of V are determined uniquely[

Let now the inclusion have an ellipsoidal shape with semi!axes a0\ a1\ a2[ Then the domain V is
de_ned by the relations xi"a−1#ijxj ¾ 0\ aij � aidij "no summing with respect to i;#[ In this case it can
be shown that an integral operator with the kernel P"x# has the property of polynomial con!
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servativity "Kunin and Sosnina\ 0860^ Asaro and Barnett\ 0864#[ In particular\ let the external
_elds and the temperature be homogeneous in the domain V "F 9 � const\ u � const# and let this
domain have a form of a sphere with radius a centered at the origin[ If F � const in V\ the problem
reduces to the evaluation of the integral "Willis\ 0870#

gV

P"x−x?# dx? �
0

7p1 g=j=�0

P"j# dSj =
11

1p1 gV

d"p−j = x?# dx?\

p � j = x\ P"j# � jG"j#j[ "1[00#

The integral over the domain V in "1[00# is equal to the area of intersection of the plane j = x � p
with the sphere V^ that is p1"a1−p1# if =p= ¾ a and zero if p × a[ For x $ V\ the second derivative
of this integral equals −1p and the right!hand side of "1[00# is a constant[ Similar results can be
obtained for ellipsoids\ which by means of a coordinate transformation ti � a−0

ij xj can be trans!
formed to the unit sphere[ In this case

gV

P"x−x?# dx? � −P9 � const\

P9 �
=det a=

3p g=j=�0

P"j#
dSj

r2"j#
\ r"j# � zji"a1#ijjj[ "1[01#

Thus\ for an external _eld F 9"x#\ and temperature _eld u"x# which are homogeneous in V\ the
integral eqn "1[6# is transformed into an algebraic equation

F � F9−P9"L0F¦B0u#[ "1[02#

Resolving this equation for F\ we can express the strain _eld o and the electric _eld E via external
_elds o9\ E9 and temperature u

F � A"F9−P9B0u#\ A �"I¦P9L0#−0\

I � B
Iijkl 9

9 dik B\ Iijkl � di"kdl#j[ "1[03#

We should mention that\ for any two!phase composite\ there is an exact relationship between the
thermal part and the external loading part of "1[03# "see Benveniste\ 0882b#[0

2[ Effective thermoelectroelastic properties of a medium with a random set of inclusions

We examine an unbounded elastic piezoelectric medium with properties L9 and B9\ containing
a spatially homogeneous random set of ellipsoidal inclusions which occupy a system of isolated
regions Vk with characteristic functions Vk"x#\ k � 0\ 1\ [ [ [ [ The system of equations for the strain

0 The authors are grateful to an anonymous referee who pointed out the equivalence of our expression with that exact
result[



V[M[ Levin et al[:International Journal of Solids and Structures 25 "0888# 1572Ð16941577

_eld o"x# and the electric _eld E"x# in the medium with inhomogeneities can be written in a form
similar to "1[6#

F"x# � F9"x#¦gV

P"x−x?#ðL0"x?#F"x?#¦B0"x?#u"x?#ŁV"x?# dx?[ "2[0#

Here V"x# denotes the characteristic function of the region V � Sk Vk\ occupied by inclusions\
L0"x# and B0"x# are functions\ which coincide with the spatially constant values L0 � L0"vk# and
B0 � B0"vk# when x $ Vk "vk is a set of geometric parameters which characterize the orientation of
principle anisotropy axes of k!th ellipsoid#[

To solve the homogenization problem and to develop the macroscopic system of coupled
electroelastic equations on the basis of eqn "2[0#\ we shall use the E}ective Field approach "Kanaun
and Levin\ 0883#[ In this method every inclusion is considered as an isolated region in an otherwise
homogeneous medium*the matrix of the composite[ The presence of surrounding inclusions is
taken into account by introducing an e}ective external _eld acting on this inclusion[ In distinction
to the traditional form of the EFM "Walpole\ 0858^ Levin\ 0865^ Markov\ 0870# the e}ective _eld
is considered to be random and a special technique is used for calculating its statistical moments[

Let us _x one of the typical realizations of a random set of inhomogeneities and consider an
arbitrary k!th inclusion\ occupying the region Vk[ We denote the local external _eld acting on this
inclusion by F�"k# "x#[ This _eld is de_ned in Vk and is composed of the external _eld F 9"x# and
disturbances of the _elds due to surrounding inclusions[

Let now F�"x# be the _eld which coincides with the F�"k# "x# when x $ Vk[ By the help of the
de_nition

V"x\ x?# � s
i�k

Vi"x?#\ x $ Vk\ "2[1#

we may write for an arbitrary point x inside the domain V

F�"x# � F9"x#¦Ð P"x−x?#ðL0"x?#F"x?#¦B0"x?#u"x?#ŁV"x\ x?# dx?[ "2[2#

We suppose that the _eld F�"x# has the same structure in any region occupied by the inclusions
"this is the _rst hypotheses of the EFM#[ In particular\ if this _eld is constant inside each region
Vk "but may vary randomly from one inclusion to another# the connection between the _eld
F"x#"x $ V# and F�"x# is given by the relation "1[03#\ which has been obtained above by solving
the one!particle problem for an ellipsoidal inhomogeneity

F"x# � A"x#ðF�"x#−P9"x#B0"x#u"x#Ł[ "2[3#

Here A"x# and P"x# are functions which for x $ Vk coincide with the constant operators
A � A"ak\ vk# and P9 � P"ak\ vk# de_ned in eqns "1[01# and "1[03#[ We note that the _eld F�"k# "x#\
being constant in ellipsoid Vk\ may depend in general on the orientation vk of this region[
Substitution of the expression "2[3# into the right!hand side of eqns "2[0# and "2[2# allows us to
express the electroelastic _elds at an arbitrary point of the medium by the local external _eld and
temperature
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F"x# � F9"x#¦Ð P"x−x?#ðLA"x?#F�"x?#¦BA"x?#u"x?#ŁV"x?# dx?\

LA"x# � L0"x#A"x#\ BA"x# � A	"x#B0"x# "2[4#

where

A �"I¦P9L0#−0\ A	 �"I¦L0P9#−0[

Furthermore we obtain the self!consistent equation for the _eld F�"x#

F�"x# � F9"x#¦Ð P"x−x?#ðLA"x?#F�"x?#¦BA"x?#u"x?#ŁV"x\ x?# dx?[ "2[5#

When we are concerned with a random set of inclusions\ F"x# and F�"x# become random functions[
By taking the ensemble average of both sides of eqn "2[4# we _nd

ðF"x#Ł � F9"x#¦Ð P"x−x?#ððLA"x?#F�"x?#¦BA"x?#u"x?#ŁV"x?# = x?Ł dx?[ "2[6#

Here the symbol ð= = x?Ł depicts the ensemble mean under the condition that x? is located in the
region V\ occupied by inclusions[

Let us now suppose that the random _eld F�"x# in the points of the region Vi is statistically
independent of the physical properties of this region "the second main hypotheses of the EFM#[
In addition let the temperature _eld u"x# be deterministic[ This allows us to express the mean on
the right!hand side of "2[6# as

ððLA"x#F�"x#¦BA"x#u"x#ŁV"x# = xŁ � ðLA"x#V"x#F
�"x\ v#Ł¦ðBA"x#V"x#Łu"x#[ "2[7#

Here we have de_ned] F
�"x\ v# � ðF�"x# = x\ vŁ\ where the symbol ð= = x\ vŁ depicts the mean
under the condition that the point x is located in an inclusion with orientation v[ The mean
F
�"x\ v# will be called the e}ective _eld acting on the inclusion with orientation v[ For a spatially
homogeneous set of inclusions\ BA"x# is a homogeneous random function exhibiting the ergodic
property[ Using this property we obtain

ðBA"x#V"x#Ł � BÞA\ BÞA � n9ðvBA"a\ v#Ł[ "2[8#

Here n9 is the numerical concentrations of inclusions\ v is the volume of the typical inclusion\ and
the averaging of the right parts of the last expression goes over the random sizes\ orientations and
properties of the ellipsoidal inhomogeneities[

Taking into account "2[7# and "2[8#\ eqn "2[6# now has the form

ðF"x#Ł � F9"x#¦Ð P"x−x?#ðT�"x?#¦BÞAu"x?#Ł dx?[

T�"x?# � ðLA"x?#V"x?#F
�"x?\ v#Ł[ "2[09#

It follows from this that the average _eld ðF"x#Ł at an arbitrary point x of a composite material
can be expressed by the moment of e}ective _eld T�"x?#[ Equation "2[5# gives the possibility to
determine this moment[ After averaging both parts of "2[5# under the condition x $ V"v#\ we can
write

F
�"x\ v# � F9"x#¦Ð P"x−x?#ððLA"x?#F�"x?#¦BA"x?#u"x?#ŁV"x\ x?# = x?^ x\ vŁ dx?[ "2[00#

Here the symbol ð= = x?^ x\ vŁ denotes the operation of averaging under the condition x $ V"v#\
x? $ V[ In general the mean ð= = x?^ x\ vŁ di}ers from ð= = x\ vŁ and eqn "2[0# turns out to be
statistically unclosed[ To close it we must invoke certain additional assumptions concerning the
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statistical properties of the _eld F�"x#[ The simplest assumption is represented by analogue of the
so!called {quasicrystalline approximation| proposed by Lax "0840#\ according to which the means
ð= = x?^ x\ vŁ and ð= = x\ vŁ coincide[ This results in

F
�"x\ v# � F9"x#¦Ð P"x−x?#ððLA"x?#F�"x?#¦BA"x?#u"x?#ŁV"x\ x?# = x\ vŁ dx?[ "2[01#

Assuming that the inclusion properties are statistically independent of their location in space\ we
may write the means on the right!hand side of "2[01# in the form

ððLA"x?#F�"x?#¦BA"x?#u"x?#ŁV"x\ x?# = x\ vŁ � ðT�"x?#¦BÞAu"x?#ŁCv"x\ x?#

Cv"x\ x?# � ðV"x#Ł−0ðV"x\ x?# = x\ vŁ[ "2[02#

For a spatially homogeneous set of inclusions\ the function Cv"x\ x?# depends only on the di}erence
of arguments "Cv"x\ x?# � Cv"x−x?##[ This function characterizes the density of inhomogeneity
distribution surrounding the typical inclusion of orientation v[ It de_nes the shape of the {cor!
relation hole|\ inside which a typical inclusion of orientation v is located[

Equation "2[00# takes the form

F
�"x\ v# � F9"x#¦Ð P"x−x?#ðT�"x?#¦BÞAu"x?#ŁCv"x−x?# dx?[ "2[03#

Eliminating the external _eld F 9"x# from eqns "2[09# and "2[03# we get the equation which couples
the e}ective _eld F
�"x\ v# and the average _eld ðF"x#Ł in the composite

F
�"x\ v# � ðF"x#Ł−Ð P"x−x?#ðT�"x?#¦BÞAu"x?#ŁFv"x−x?# dx?\

Fv"x# � 0−Cv"x#[ "2[04#

Let us assume that there exists a linear transformation of the x!space that rearranges the function
Fv"x# into a spherically symmetric one

y � b"v#\ Fv"b−0"v#y# � Fv"=y=#[ "2[05#

In this case the ellipsoid de_ned by the equation =b"v#x= � 0 with semi!axes b0\ b1\ b2 describes the
form of the correlation hole[

For a spatially homogeneous random set of inclusions\ Fv"x# is a smooth function\ which
quickly goes to zero outside a region having a size of the order of the correlation hole size[ If we
neglect the change of the _elds F
�"x\ v# and u"x# in this region\ eqn "2[04# takes the form

F
�"x\ v# � ðF"x#Ł¦PF
v ðT�"x#¦BÞAu"x#Ł\

PF
v � −Ð P"x#Fv"x# dx[ "2[06#

Let us multiply both parts of eqn "2[06# by the operator LA"x#V"x# and average the result over the
ensemble of random orientation of inclusions[ This can be written as

T�"x# � LÞAðF"x#Ł¦ðLA"x#V"x#PF
v "x#ŁðT�"x#¦BÞAu"x#Ł\

LÞA � n9ðvLA"a\ v#Ł "2[07#

where PF
v "x# is the function which coincides with PF

v inside the inclusion of orientation v[ Resolving
this equation for T�"x# we _nd
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T�"x# � DðLÞAðF"x#Ł¦ðLA"x#V"x#PF
v "x#ŁBÞAu"x#Ł\

D � "I−ðLA"x#V"x#PF
vŁ#−0[ "2[08#

Substitution of this expression into the right!hand side of "2[09# gives

ðF"x#Ł � F9"x#¦Ð P"x−x?#DðLÞAðF"x?#Ł¦BÞAu"x?#Ł dx?[ "2[19#

Let us apply the operator 9L9 to both sides of the expression[ Taking into account the relations
"1[7# and "1[8#\ we _nd that the average elastic and electric _elds in the composite material satisfy
the equation

9ðL�9ðf"x#Ł¦B�u"x#Ł � 9\ L� � L9¦DLÞA\ B� � B9¦DBÞA\ "2[10#

which coincides in form with the equilibrium equation of the coupled thermoelectroelastic theory
for somehomogeneousmedium[The response of thismedium to an external action ismacroscopically
identical with the reaction of the microinhomogeneous material[ The quantities L� and B� in "2[10#
represent the operators of e}ective thermoelastic characteristics of the piezoelectric composite[

3[ Evaluation for transversely isotropic inclusions with spheroidal shape in an isotropic matrix

Now we are going to evaluate the general theory for inclusions which can be described as
spheroids with semi!axes a0 � a1 � a and a2 corresponding to a rectangular coordinate system
"x0\ x1\ x2#[ Furthermore we assume that the matrix has isotropic properties with Lame�|s constants
l9\ m9 and dielectric coe.cient h9[ For this case the operator P of "1[01# is given in the Appendix[

The operators A and LA can be represented in the following compact form

A � B
AÞ H

−ht a¹ B\ LA � B
CA −eA

eAt hA B "3[0#

where we have used

AÞ � "I¦PCÞ#−0\ a¹ �"0Þ¦ph¹#−0\ H � APea¹\ h � apetAÞ

h¹ � h0¦etAPe\ CÞ � C0¦eapet\ A �"I¦PC0#−0\ a �"0Þ¦ph0#−0\ 0Þ� dij

CA � CÞAÞ\ eA � Atea¹\ hA � h¹a¹[ "3[1#

Let the inclusions have hexagonal symmetry of the class 5 mm with the symmetry axis of in_nite
order directed along x2[ Then the tensors C\ e\ h\ b and p can be decomposed according to a special
tensor basis ðsee "A[1# in the AppendixŁ

C � kT1¦1m"T0−0
1
T1#¦l"T2¦T3#¦3mT4¦nT5\

e � e0U
0¦e1U

1¦e2U
2\ h � h0t

0¦h1t
1\ b � b0t

0¦b1t
1\ pi � pmi[ "3[2#

Here k\ m\ l\ m\ n are _ve independent elastic moduli of the transversely isotropic medium\ e0\ e1\
e2 are three piezoelectric constants\ h0\ h1 are two dielectric coe.cients\ b0\ b1 are two temperature
stress coe.cients\ and p is the pyroelectric constant[
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The coe.cients of the expansions in "3[2# can be expressed via the {common| components of the
tensors C\ e and h in the following way

k � 0
1
"C00¦C01#\ m � 0

1
"C00−C01#\ l � C02\ m � C33\ n � C22

e0 � e20\ e1 � e04\ e2 � e22\ h0 � h22\ h1 � h00 � h11[ "3[4#

Completing the calculation provided by the formulae "3[0# and "3[1# we have

AÞ � AÞ0T
1¦AÞ1 0T0−

0
1

T11¦AÞ2T
2¦AÞ3T

3¦AÞ4T
4¦AÞ5T

5\

AÞ0 �
0
1D

"0¦P5n¹¦1P2l¹#\ AÞ1 �"0¦1m0P1#−0\ AÞ2 � −
0
D

"1P0l¹¦P2n¹#\

AÞ3 � −
0
D

"1P2k¹¦P5l¹#\ AÞ4 � 1"0¦m¹P4#−0\ AÞ5 �
1
D 0

0
1

¦1P0k¹¦P2l¹1
D � 1 $0

0
1

¦1P0k¹¦P2l¹1"0¦P5n¹¦1P2l¹#−"1P0l¹¦P2n¹#"1P2k¹¦P5l¹#% "3[5#

where

k¹ � k0¦a0p0"e0#1\ l¹� l0¦a0p0e0e2\ m¹ � m0¦a1p1"e1#1\

n¹ � n0¦a0p0"e2#1\ a0 �"0¦p0h
0
0#−0\ a1 �"0¦p1h

0
1#−0

k0 � k−l9−m9\ m0 � m−m9\ l0 � l−l9\ m0 � m−m9\

n0 � n−l9−1m9\ h0
0 � h0−h9\ h0

1 � h1−h9[ "3[6#

The quantities P0\ [ [ [ \ P5\ p0 and p1 are given in Appendix "A[3#[
The remaining tensors in the operator A in "3[0# have the form

a¹ � a¹0t
0¦a¹1t1

a¹0 � "0¦p0h¹0#−0\ a¹1 �"0¦p1h¹1#−0\

h¹0 � h0
0¦3"1P0A0¦P2A2#"e0#1¦1"1P2A0¦1P0A3¦P5A2¦P2A5#e0e2

¦"P5A5¦1P2A3#"e2#1\ h¹1 � h0
1¦

0
1
P4A4"e1#1

H � H0U
0¦H1U

1¦H2U
2

H0 � a¹0 ð1"1P0A0¦P2A2#e0¦"1P2A0¦P5A2#e2Ł\ H1 � 0
3
a¹1P4A4e1\

H2 � a¹0 ð1"1P0A3¦P2A5#e0¦"P5A5¦1P2A3#e2Ł\

ht � h0U
0t¦h1U

1t¦h2U
2t\

h0 � a0p0"1AÞ0e0¦AÞ3e2#\ h1 � 0
1
a1p1AÞ4e1\ h2 � a0p0"1AÞ2e0¦AÞ5e2# "3[7#

where the components of the tensor Aijkl "i[e[ A0\ A1\ [ [ [ \ A5# are obtainable from the components
of the tensor AÞijkl "3[5# by putting e0 � e1 � e2 � 9[
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Let us now represent the formulae for the components of tensors appearing in the operator LA

in "3[0#

CA � kAT1¦1mA 0T0−
0
1

T11¦lA"T2¦T3#¦3mAT4¦nAT5

kA �
k¹

D $0¦P5 0n¹−
l¹1

k¹ 1%\ mA � m0"0¦1m0P1#−0\

mA � m¹ "0¦P4m¹ #−0\ lA �
0
D

ðl¹−1P2"k¹n¹−l¹1#Ł\

nA �
0
D

ðn¹¦3P0"k¹n¹−l¹1#Ł\

eA � eA
0U0¦eA

1U1¦eA
2U2\

eA
0 � "1A0e0¦A3e2#a¹0\ eA

1 �
0
1

A4a¹1e1\ eA
2 �"1A2e0¦A5e2#a¹0\

hA � hA
0 t0¦hA

1 t1

hA
0 � h¹0"0¦p0h¹0#−0\ hA

1 � h¹1"0¦p1h¹1#−0[ "3[8#

Analogous calculations allow us to determine the {vector| BA]

BA � B
−bA

ij

pA
i B\

bA
ij � bA

0 t0ij¦bA
1 t1ij\

bA
0 � b0

0AÞ5¦1b0
1AÞ2−ph2\ bA

1 � b0
0AÞ3¦1b0

1AÞ0−ph0\

pA
i � pAmi

pA � pa¹0¦b0
0H2¦1b0

1H0

b0
0 � b0−b9\ b0

1 � b1−b9 "3[09#

where b9 is the thermal stress coe.cient of the matrix[
For simplicity we assume that all inclusions are homogeneously and isotropically distributed in

the matrix and have identical thermo!electroelastic properties\ volume v\ and aspect ratio a:a2[
Then the only averaging remains over the random orientations of inclusions on the right!hand
side of the formulae "2[8# and "2[07#[

Two limiting cases can be considered[

3[0[ Random orientations of inclusions

The orientation of spheroidal transversely isotropic inclusions is determined unequivocally by
the orientation of the vector m[ If this orientation is random then the bases "A[1# are also random[
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In the case of a homogeneous distribution of inclusions orientations "statistical isotropy# the
averaged tensors are given by

ðT0"m#Ł � 0
34

"09E0¦10E1#\ ðT1"m#Ł � 1
34

"09E0¦2E1#

ðT2"m#Ł � ðT3"m#Ł � 1
34

"4E0−2E1#\ ðT4"m#Ł � 0
4
E1\

ðT5"m#Ł � 0
34

"4E0¦5E1#

ðt0ij"m#Ł � 0
2
dij\ ðt1ij"m#Ł � 1

2
dij

E0
ijkl � dijdkl\ E1

ijkl � Iijkl−
0
2
E0

ijkl[ "3[00#

We may choose the shape of the correlation hole as a spheroid with an aspect ratio a:a2 coinciding
with those of the inclusion[ Then we have for the operator PF

v from "2[06#

PF
v � P9[ "3[01#

By averaging the operator LA"x# and the vector BA"x# by the help of expressions "3[00#\ we obtain

LÞA � c B
CÞA 9

9 h¹A B\ BÞA � c B
−b¹A

9 B "3[02#

where

CÞA � KÞAE0¦1m¹AE1\ h¹A
ij � h¹Adij\ b¹A

ij � b¹Adij\

KÞA � 0
8
"3kA¦3lA¦nA#\ m¹A � 0

04
"kA¦5mA−1lA¦5mA¦nA#\

h¹A � 0
2
"hA

0¦1hA
1 #\ b¹A � 0

2
"bA

0¦1bA
1 # "3[03#

and c � n9v is the volume concentration of inclusions[
The composite material is macroscopically isotropic and its two e}ective elastic moduli "volume

K� and shear m�#\ dielectric coe.cient h� and thermal stresses coe.cient b� are determined by the
expressions

K� � K9¦cKÞA"0−2cBk#−0\ m� � m9¦cm¹A"0−1cBm#−0\

h� � h9¦ch¹A"0−cb#−0\ b� � b9¦cb¹A"0−2cBk#−0 "3[04#

with

Bk � 0
8
ð3"1P0¦P2#kA¦1"1P0¦2P2¦P5#lA¦"1P2¦P5#nAŁ\

Bm � 0
04

ð1"P0−P2#kA¦5P1mA¦"2P2−1P0−P5#lA¦2P4mA¦"P5−P2#nAŁ\

b � 0
2
"p0h

A
0¦1p1h

A
1 # "3[05#

"K9 � l9¦1:2m9 is the bulk elastic modulus of the matrix#[
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3[1[ Unidirectionally oriented spheroidal inclusions

We consider a second special case where the identical spheroidal inclusions have random
positions but identical "parallel# orientation[ In this case the general expressions for the e}ective
electroelastic characteristics of the composite "2[10# can be slightly simpli_ed

L� � L9¦cL0 ðI¦"0−c#P9L0Ł−0

B� � B9¦cðI¦"0−c#L0P9Ł−0B0[ "3[06#

In accordance with these formulae the composite material exhibits macroscopically transversely
isotropic symmetry and its thermoelectroelastic constants are expressed as

L� � B
C� −e�

e�t h� B\ B� � B
−b�

p� B "3[07#

where

C� � k�T1¦1m�"T0−0
1
T1#¦l�"T2¦T3#¦3m�T4¦n�T5\

e� � e�0U
0¦e�1U

1¦e�2U
2\ h� � h�0t

0¦h�1t
1\

b� � b�0t
0¦b�1t

1\ p�i � p�mi

k� � l9¦m9¦ckA"c#\ m� � m9¦cmA"c#\ l� � l9¦clA"c#\

m� � m9¦cmA"c#\ n� � l9¦1m9¦cnA"c#\ e�i � ceA
i "c# "i � 0\ 1\ 2#\

h�0 � h9¦chA
0 "c#\ h�1 � h9¦chA

1 "c#\

b�0 � b9¦cbA
0 "c#\ b�1 � b9¦cbA

1 "c#\ p� � cpA"c#[ "3[08#

In these equations the quantities kA\ mA\ lA\ mA\ nA\ eA
i \ hA

k \ pA are now functions of the volume
fraction c[ They can be obtained from the corresponding expressions in "3[8# and "3[09# by simply
replacing the quantities P0\ [ [ [ \ P5 and p0\ p1 by "0−c#Pi "i � 0\ 1\ [ [ [ \ 5# and "0−c#pk "k � 0\ 1#[

The above expressions coincide with the results obtained by the MoriÐTanaka Method[ This
method is based on the assumption that every inclusion behaves as an isolated one in the matrix
of the composite and that all inclusions undergo a constant and identical external electroelastic
_eld in the matrix[ This _eld is assumed to coincide with the average _eld in the matrix[ It can be
shown that the MoriÐTanaka Method leads to results identical with those of the present EFM if
we accept as additional assumption that the shape of the correlation hole coincides with the shape
of a typical inclusion[ In particular we can demonstrate that under this assumption and for
continuous _bers "aspect ratio g : 9# the present results coincide with the analytical predictions
by Chen "0883#[ In the general case the shapes of inclusions and the correlation hole can be
di}erent and the operators P and PF are not the same[

4[ Numerical results and discussion

Subsequently we present some typical predictions of the theory by considering a polymer "epoxy#
matrix which contains a variable volume fraction of piezoactive particles "LeadÐZirconiumÐ
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Table 0
Electroelastic material constants

C00 C01 C02 C22 C33 e20 e22 e04 h00 h22

GPa GPa GPa GPa GPa Cm−1 Cm−1 Cm−1 o9 o9

Polymer 7[9 3[3 3[3 7[9 0[7 9 9 9 3[1 3[1
PZT 037 65[1 63[1 020 14[3 −1[0 8[4 8[1 359 124
BT 049 55[9 55[9 035 33[9 −3[2 06[4 00[3 0004 0159

Where o9 � 7[74 09−01 As:V m is the permittivity of the free space[

Table 1
Thermal material constants

r00 r22 g2

09−5 K−0 09−5 K−0 092 V m−0 K−0

Polymer 59 59 9
BT 7[42 0[88 −02[2

Titanate "PZT# or BariumÐTitanate "BT##[ The materials data are shown in Tables 0 and 1[ For
simplicity and for comparison purposes we restrict ourselves to a set of material data which has
been used previously by other authors "Dunn and Taya\ 0882a^ Dunn\ 0882#[

The piezoactive inclusions are approximated by spheroids with di}erent aspect ratios[ The axis
of rotational symmetry is denoted by x2\ and it coincides with the poling direction[ The inclusions
are either aligned with the inclusions three!axis parallel to the sample three!axis or they are
randomly oriented such that the composite exhibits macroscopically isotropic properties[ The
resulting equations which have to be evaluated are then given by "3[07# and "3[04#\ respectively[

Figure 0 shows the e}ective axial permittivity of a composite with aligned inclusions[ We _nd a
strong dependence on the shape of the inclusions\ whereas the transverse permittivity is only
weakly dependent on shape "not displayed here\ the corresponding curves are very near to the
result for spherical particles in Fig[ 0#[

Similar results are obtained for the uniaxial tension modulus at constant electric _eld "Fig[ 1#[
One observes\ however\ a somewhat surprising crossing of the predicted curves when the volume
fraction c : 0[ Such a behavior neither occurs in the uncoupled case nor is it observed for 0:s22\
which is the uniaxial modulus at constant electric displacement ðcf "1[3#Ł[ The reason for this
behavior near to c � 0 lies in the special piezoelectric coupling properties] the resulting e}ective
modulus is a complicated function of the uniaxial modulus of a pure PZT ceramic\ which may
vary between 028 or 71 GPa at constant electric displacement or constant electric _eld\ respectively\
and it depends on the value of the e}ective piezoelectric coupling constant[ The latter shows a
particular strong variation near c � 0 "cf Figs 2 and 3# especially for spherical particles\ and this
should be the reason for the non!monotone behavior of the uniaxial modulus[
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Fig[ 0[ E}ective relative dielectric constant h22:o9 at _xed strain of a PZT particle reinforced polymer "aligned orientation
of inclusions\ parameter � particle aspect ratio a:a2#[

Of course the limit c : 0 looks arti_cial since we then are concerned with a nearly homogeneous
material where the piezoelectric inclusions are still separated by a thin layer of matrix material[
Nevertheless such a composite is realizable when an appropriate size distribution of inclusions is
realized "the so!called composite sphere assemblage geometry\ which can be applied also to
ellipsoidal inclusions#\ and the theory predicts the right limit for c � 0[

The piezoelectric coupling constants are shown in Fig[ 2[ For an aspect ratio 9[0\ the result can
be compared with the theoretical prediction of Dunn and Taya "0882a# whose investigation was
based on the MoriÐTanaka Method[ According to the remark at the end of the preceding section\
we obtain complete coincidence[

Besides eik it is also interesting to consider the alternative coupling constant dik which is de_ned
by

d � C−0e[ "4[0#

In order to compare the predictions of the present model with experimental results\ we adopt
slightly di}erent properties of the piezoelectric inclusions[ Following Chan and Unsworth "0878#
and Dunn and Taya "0882a# we put e22 � 01[2 C:m1 instead of the value displayed in Table 0[
Figure 3 shows the results[ For continuous _bers we again get complete coincidence with the MoriÐ
Tanaka results by Dunn and Taya "0882a# and there is also a relatively good accordance with the
experimental results[

Next we turn to an isotropic composite[ Although such a composite does not exhibit macroscopic
piezoelectric properties it is interesting to investigate how much the e}ective permittivity is in~u!
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Fig[ 1[ E}ective uniaxial elastic modulus 0:sE
22 at _xed electric _eld of a PZT particle reinforced polymer "aligned

orientation of inclusions\ parameter � particle aspect ratio a:a2#[ The material constant sE
22 is obtained by normal

inversion of the elastic modulus tensor C which was introduced in eqn "1[0# for constant electric _eld[

enced by the piezoelectric coupling acting in the inclusion phase[ Figure 4 shows the theoretical
predictions for both prolate and oblate particle shape[ We found that the local coupling is only
important for oblate inclusions "increase by a factor of two for an aspect ratio 099# whereas for
spherical or prolate inclusions this in~uence is insigni_cant[ In Fig[ 4 the display range of the
volume fraction has been limited to 9[3 since for higher volume fractions the predictions become
questionable[ This is due to the fact that for a random orientation of inclusions no homogeneous
piezoelectric will result if c : 0 since one still has a local property variation by di}erent orientations[
Furthermore the main hypothesis of the present EFM becomes senseless when we approach the
state of dense packing[ So one cannot expect a meaningful limiting result for high volume fraction
of inclusions "regardless some special cases as the aligned orientation discussed above#[ Moreover\
for random orientation distribution and high volume fraction\ it is known that the MoriÐTanaka
method may even predict e}ective properties outside the general bounds[ The same may happen
in the present approach though up to now there is no explicit proof for this[

Finally the thermal properties will be considered[ Figures 5Ð7 show some results as functions of
the volume fraction of aligned inclusions "note that\ according to our de_nition in "1[0#\ all
pyroelectric constants get a negative numerical value#[ Generally we may state that the results
coincide with the predictions by Dunn "0882# who used the MoriÐTanaka Method[

An interesting behavior occurs for the pyroelectric constant g2 at constant stress and constant
electric displacement shown in Fig[ 6[ The theory predicts an increase for decreasing volume
fraction up to a maximum followed by a steep decrease to the right zero limit value[ For the
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Fig[ 2[ E}ective piezoelectric constants e22 and e20 of a PZT particle reinforced polymer "random orientation of inclusions\
parameter � particle aspect ratio a:a2#[

Fig[ 3[ E}ective piezoelectric constants d22 of a PZT particle reinforced polymer "aligned orientation of inclusions\
parameter � particle aspect ratio a:a2#[
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Fig[ 4[ E}ective relative dielectric constant h:o9 at _xed strain of a PZT particle reinforced polymer "aligned orientation
of inclusions\ parameter � particle aspect ratio a:a2#[

Fig[ 5[ E}ective thermal expansion coe.cient r22 "solid lines# and r00 "broken lines# at _xed electric displacement of a
BT particle reinforced polymer "aligned orientation of inclusions\ parameter � particle aspect ratio a:a2#[ The material
property r can be calculated from the other material constants by using eqn "1[3#[
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Fig[ 6[ E}ective pyroelectric constant −g2 at _xed stress and electric displacement of a BT particle reinforced polymer
"aligned orientation of inclusions\ parameter � particle aspect ratio a:a2#[ The material property g can be calculated
from the other material constants by using eqn "1[3#[

pyroelectric constant at constant electric _eld and strain\ shown in Fig[ 7\ such a result is not
observed[ The reason for this unexpected behavior lies in the large thermal expansion coe.cient
of the polymer matrix] for low volume fractions the _bers have to follow the deformation of the
matrix during a temperature change giving rise to high stresses and high electric _eld in the _bers\
which is macroscopically described by the high e}ective pyroelectric constant[

5[ Conclusions

We have shown that the application of the EFM to the coupled thermoelectro!mechanical
properties of piezoelectric materials yields reasonable results[ The theory is applicable to composites
where the anisotropic inclusions in an isotropic matrix may be distributed according to any
orientation distribution function[ Closed analytical solutions have been presented for complete
randomness "uniform orientation distribution# and aligned distribution where no orientation
variation occurs[

Because experimental results are rare we have compared our results mainly with other theoretical
predictions which are based on the MoriÐTanaka approach[ That approach appears from the
EFM as a special case when the shape of the correlation hole is identical with the shape of the
aligned inclusions[ As far as such results are available\ we obtained a su.cient coincidence[

Finally we note that the EFM seems also applicable to the determination of the e}ective
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Fig[ 7[ E}ective pyroelectric constant −p2 at _xed strain and electric _eld of a BT particle reinforced polymer "aligned
orientation of inclusions\ parameter � particle aspect ratio a:a2#[

thermoelectroelastic characteristics of single!phase piezoactive polycrystals[ This will be dem!
onstrated in a forthcoming paper[

Appendix] The operator P9 for a spheroidal inclusion in an isotropic matrix

Let us consider an isotropic matrix with Lame�|s constants l9\ m9 and the coe.cient of dielectric
permeability h9[ If the inclusion has a spheroidal shape with semiaxes a0 � a1 � a\ a2 "the axis of
spheroidal symmetry coincides with the x2!axis of a rectangular system of coordinates#\ the operator
P9 in "1[01# takes the form

P9 � B
Pijkl 9

9 pik B "A[0#

where the tensors Pijkl and pik have hexagonal "or transversely isotropic# symmetry[ For the explicit
representation of these tensors it is convenient to use the following tensorial bases which are formed
by the unit vector mi of the x2 axis and the projector uij � dij−mimj on the plane perpendicular to
x2

T0
ijkl � ui"kul#j\ T1

ijkl � uijukl\ T2
ijkl � uijmkml\ T3

ijkl � mimjukl\

T4
ijkl � ui#"kml#m" j\ T5

ijkl � mimjmkml\ uij � dij−mimj\
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U0
ijk � uijmk\ U1

ijk � 1m"iuj#k\ U2
ijk � mimjmk\ t0ij � mimj\ t1ij � uij[ "A[1#

The convenience of using the tensorial bases lies in the following properties[ The product of the T!
basis tensors over two indices forms the closed algebra\ the product of the U!basis tensors over
one index gives the tensors from T!basis and over two indices*the tensors from t!basis[ As for
the t!basis\ it is orthogonal with respect to contraction by one index\ i[e[ triat

s
aj � d¾rst

r
ij "no summing

on r;#[
In these bases we have

P � P0T
1¦P1"T0−0

1
T1#¦P2"T2¦T3#¦P4T

4¦P5T
5\

p � p0t
0¦p1t

1 "A[2#

where

P0 �
0

1m9

ð"0−k9# f9¦f0Ł\ P1 �
0

1m9

ð"1−k9# f9¦f0Ł\ P2 � −
f0
m9

\

P4 �
0
m9

"0−f9−3f0#\ P5 �
0
m9

ð"0−k9#"0−1f9#¦1f0Ł\

p0 �
0
h9

"0−1f9#\ p1 �
0
h9

f9

f9 �
0−`

1"0−g1#
\ f0 �

k9

3"0−g1#1
ð"1¦g1#`−2g1Ł

k9 �
l9¦m9

l9¦1m9

\ g �
a
a2

[ "A[3#

In these expressions the function `"g# is determined for oblate spheroids "g × 0# by

`"g# �
g1

zg1−0
arctan zg1−0 "A[4#

and for prolate spheroids "g ³ 0# by

`"g# �
g1

1z0−g1
ln

0¦z0−g1

0−z0−g1
[ "A[5#

For a spherical inclusion "g � 0# the functions f9 and f0 go to

f9 �
0
2

\ f0 �
k9

04
"A[6#

and the tensors P and p become isotropic tensors with the following components

P0 �
4−3k9

29m9

\ P1 �
0
1

P4 �
4−1k9

04m9

\ P2 � −
k9

04m9

\
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P5 �
4−2k9

04m9

\ p0 � p1 �
0

2h9

[ "A[7#
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